Reshaping Visual Datasets for Domain Adaptation

نویسندگان

  • Boqing Gong
  • Kristen Grauman
  • Fei Sha
چکیده

In visual recognition problems, the common data distribution mismatches between training and testing make domain adaptation essential. However, image data is difficult to manually divide into the discrete domains required by adaptation algorithms, and the standard practice of equating datasets with domains is a weak proxy for all the real conditions that alter the statistics in complex ways (lighting, pose, background, resolution, etc.) We propose an approach to automatically discover latent domains in image or video datasets. Our formulation imposes two key properties on domains: maximum distinctiveness and maximum learnability. By maximum distinctiveness, we require the underlying distributions of the identified domains to be different from each other to the maximum extent; by maximum learnability, we ensure that a strong discriminative model can be learned from the domain. We devise a nonparametric formulation and efficient optimization procedure that can successfully discover domains among both training and test data. We extensively evaluate our approach on object recognition and human activity recognition tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Latent Domains Modeling for Visual Domain Adaptation

To improve robustness to significant mismatches between source domain and target domain arising from changes such as illumination, pose and image quality domain adaptation is increasingly popular in computer vision. But most of methods assume that the source data is from single domain, or that multi-domain datasets provide the domain label for training instances. In practice, most datasets are ...

متن کامل

VisDA: The Visual Domain Adaptation Challenge

We present the 2017 Visual Domain Adaptation (VisDA) dataset and challenge1, a large-scale testbed for unsupervised domain adaptation across visual domains. Unsupervised domain adaptation aims to solve the real-world problem of domain shift, where machine learning models trained on one domain must be transferred and adapted to a novel visual domain without additional supervision. The VisDA2017 ...

متن کامل

Stretching Domain Adaptation: How far is too far?

While deep learning has led to significant advances in visual recognition over the past few years, such advances often require a lot of annotated data. While unsupervised domain adaptation has emerged as an alternative approach that doesn’t require as much annotated data, prior evaluations of domain adaptation have been limited to relatively simple datasets. This work pushes the state of the ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013